
YOUR CLOUD STORAGE PROVIDER DOESN’T NEED
TO SEE YOUR DATA

Brian Warner
Zooko Wilcox-O’Hearn

Session ID: AND-402
Session Classification: Advanced

Tahoe

Who We Are

• Brian Warner

• Zooko Wilcox-O’Hearn

• developers of Tahoe-LAFS
• http://allmydata.org/trac/tahoe

2

http://allmydata.org/trac/tahoe
http://allmydata.org/trac/tahoe

Tahoe

What We’re Here To Talk About

• Security of Data Stored in a Cloud
• Your Right to Security
• Better Options
• How Tahoe-LAFS Implements Those Options

3

Tahoe

What We Want You To Take Home

• Beliefs:
– You deserve confidentiality and integrity even when you buy

reliability and availability from a cloud storage provider
– Tahoe-LAFS is an open-source system which provides good

properties
• Skills:

– Identify which properties rely upon which components
– Install and use a Tahoe-LAFS storage grid

• Tools:
– Decorrelate failures
– Erasure coding provides tunable reliability-vs-overhead, better

than straight replication

4

Tahoe

Cloud Storage is Cheap, Easy, and Scalable

• plenty of vendors: Amazon, Rackspace, Google
• but it changes the security story

– who else can see your data?
– who else can modify your data?

10

Tahoe

Property Perimeters

6

Your Datacenter

availability

integrity

confidentiality

App Storage

Everyone understands the notion of a security perimeter. To maintain security, everything
inside the perimeter must function as expected. We can refine this to talk about separate
perimeters for separate properties. In the case of storage, we care about confidentiality,
integrity, and availability. For data that you manage on your own hardware, you get these
properties if all of your own hardware works correctly and remains uncompromised. This
is hard enough: any admin in your organization could mess up, any of your machines
could fail, or someone might break in.

Tahoe

Drawing Perimeters Around Clouds

76

availability

integrity

confidentiality

App Storage

Your Datacenter Cloud Storage Provider

Including outsourced storage stretches all the perimeters. In addition to your own
hardware and staff, you are now vulnerable to failures or compromises of your storage
providers facilities. How many people can see your data now? What sorts of assurances
can you have? This is an economic tradeoff, but made with hardly any information.

Tahoe

Separate the Perimeters

8

availability

integrity

confidentiality

App Storage

Your Datacenter Cloud Storage Provider

So our goal is to separate these concerns. Buy availability from your storage provider, but
bring your own security. Measuring availability, while not easy, is far simpler than
measuring the security they claim to provide you.
You know your system works when your confidentiality is not breached even if your
storage provider publishes anything you give them to the whole internet. Likewise, if you
can detect even a single bit flip in your provider’s storage, then your integrity will not be
breached (even though your availability may suffer).
Now you’re making a cost-benefit analysis based upon maintaining availability alone,
which is a much easier decision to manage.

Tahoe

Gateway

9

availability

integrity

confidentiality

App StorageGateway

Your Datacenter Cloud Storage Provider

Basically we want to implement a gateway, within your own security perimeter, that
performs encryption and integrity checking between the plaintext that your app speaks
and the validated ciphertext that you give to your storage provider.

Tahoe

Key-Value Store

10

App Storage

Your Datacenter Cloud Storage Provider

PUT: storage[key] = value
GET: value = storage[key]

key1: value1
key2: value2

So let’s make this a bit more concrete. A common API for storage services is the Key-
Value store. There are two basic operations. You can PUT a key with a value, and you can
GET the value for a previously stored key. The key can be an arbitrary string, and the
value is an arbitrary blob of data. For many applications, the key is an opaque unique
string, and is frequently stored in some other data structure like a database “foreign key”
column.

Tahoe

Opaque Key-Value Store

11

App Storage

Cloud Storage Provider

def PUT(value):
 key = RANDOM()
 storage[key] = value
 return key

def GET(key):
 value = storage[key]
 return value

key1: value1
key2: value2

Your Datacenter

For many applications, the key is an opaque unique string, and is frequently stored in
some other data structure like a database “foreign key” column. You can think of this as a
file-handle for this particular piece of data.

Tahoe

confidentiality

Encrypt Before Store

12

App Storage

Cloud Storage Provider

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

def PUT(value):
 key = RANDOM()
 SI = SHA(key)
 storage[SI] = AESenc(key, value)
 return key

def GET(key):
 SI = SHA(key)
 return AESdec(key, storage[SI])

Your Datacenter

Now we build a gateway which encrypts the data before giving it to the storage system.
We generate a random AES key for each file, and return it to the application as the
filehandle. We use a one-way hash to derive a “storage index”, with which we tell the
cloud where to store our ciphertext. This saves us from needing to remember the storage
index separately for each file.

Note that by storing the key *in the file-handle*, much of the “key management” problem
goes away: if you have the filehandle, you have all the information you need to locate,
retrieve, and decrypt the file.

This removes the storage system from the confidentiality perimeter. Nothing the storage
host can do will compromise the confidentiality of our data. We are still relying upon it for
integrity: a bit flip in the cloud will be decrypted and result in corrupted data arriving to
our application.

Tahoe

Convergent Encryption

confidentiality

13

App Storage

Cloud Storage Provider

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

Your Datacenter

def PUT(value):
 key = SHA(value)
 SI = SHA(key)
 storage[SI] = AESenc(key, value)
 return key

def GET(key):
 SI = SHA(key)
 return AESdec(key, storage[SI])

Optionally, we use another trick called “convergent encryption”, in which the encryption
key is a secure hash of the plaintext. This has the convenient property that uploading the
same file twice results in the same ciphertext, which can be shared between the two
instances to save space.

This doesn’t affect the GET code at all.

Tahoe

integrity

confidentiality

Encrypt, Hash, Store

14

App Storage

Cloud Storage Provider

def GET(filecap):
 (key, hash) = filecap
 SI = SHA(key)
 ciphertext = storage[SI]
 assert(SHA(ciphertext) == hash)
 return AESdec(key, ciphertext)

Gateway

SI-1: ciphertext1
SI-2: ciphertext2

Your Datacenter

def PUT(value):
 key = RANDOM()
 SI = SHA(key)
 ciphertext = AESenc(key, value)
 storage[SI] = ciphertext
 filecap = (key, SHA(ciphertext))
 return filecap

We can protect our data’s integrity against errors in the storage system by hashing the
ciphertext before delivery, and checking that hash upon retrieval. A hash failure is treated
identically to a failed read: availability is lost, but integrity is uncompromised. This
protects the application against undetected errors on the storage host.

We store the hash next to the encryption key. At this point, we start calling the
application-side retrieval handle a “filecap”, since it provides the capability to retrieve the
file. It is just a string, containing two cryptographic values. Note that this filecap is both
necessary and sufficient to retrieve the file. We hash the ciphertext (as opposed to the
plaintext) to allow untrusted parties to participate in verification: given a storage-index
and a hash, anyone who can access the storage service can verify that the data is intact.

You’d actually want to use Merkle trees here, so you can check integrity on smaller
pieces, without first having to download the entire file.

Tahoe

Erasure Coding for Reliability

integrity

15

confidentiality

App Storage

Cloud Storage Providers

def PUT(value):
 ciphertext = AESenc(key, value)
 SI = SHA(key)
 shares = FEC(ciphertext)
 for i,server in enum(servers):
 server.storage[SI] = shares[i]
 filecap = (key, SHA(ciphertext))
 return filecap

def GET(filecap):
 (key, hash) = filecap
 SI = SHA(key)
 shares = someservers.storage[SI]
 ciphertext = unFEC(shares)
 assert(SHA(ciphertext) == hash)
 return AESdec(key, ciphertext)

Gateway

Storage

Storage

Your Datacenter

availability

and for extra credit, we can apply erasure coding, or Forward Error Correction, to split the
ciphertext into pieces, in such a way that we only need a subset of those pieces to
recover the original. We can send each piece to a different provider, and thus tolerate
failures of a configurable subset of them. This reduces our availability perimeter: we are
less dependent upon the availability of any individual server. This might let you meet your
availability goals with cheaper (and less available) servers, or it might let you achieve a
higher availability goal than any one provider can offer. The tradeoff between cost and
quality is decided by your gateway.

Tahoe

Tahoe-LAFS

• Tahoe-LAFS: the Least-Authority File System
• implements distributed confidentiality, integrity, and

availability
• open-source project started in 2006
• http://allmydata.org/trac/tahoe

16

Now that we’ve convinced you that you want these properties, and shown you how to
build a system that provides them, it’s time to show you the system that we’ve already
built.

Tahoe

Tahoe-LAFS: Overview

17

Client
App Storage

Storage Servers

Storage

Storage

Tahoe-LAFS gateway

- web browser
- command-line tool
- Windows virtual drive
- Javascript frontends
- tahoe backup tool
- duplicity
- (S)FTP client
- FUSE

Tahoe webapi
over HTTP(S)
or (S)FTP

Tahoe storage protocol
over TCP/SSL

Tahoe
Storage

client

HTTP(S)
Server

Tahoe

Tahoe-LAFS Grid

18

Storage

Storage

Storage

Storage

Introducer

Client

Client

Client

The Tahoe grid is established by means of an “Introducer”. All nodes connect to the
introducer, both clients and storage servers. The Introducer distributes location
information about all other nodes, allowing..

Tahoe

Tahoe-LAFS Grid

19

Storage

Storage

Storage

Storage

Introducer

Client

Client

Client

.. the establishment of a full mesh of connectivity: each client connects to all storage
servers.

Tahoe

Tahoe CLI, webapi

20

Client
App

Tahoe-LAFS gateway

PUT /uri HTTP/1.0

Fourscore and seven years ago..

RESTful webapi
over HTTP(S)

Tahoe
Storage

client

HTTP(S)
Server

% tahoe put gettysburg.txt

- web browser
- command-line tool
- Javascript frontends

Tahoe

File Encoding

21

Tahoe-LAFS gateway

Fourscore and seven years ago..

Tahoe
Storage

client

HTTP(S)
Server

Rm91cnNjb3JlIGFuZCBzZXZlbiB5..

AES VdW81qLA6INx0uRPg0aWrKkMGgI..

FEC

hashes

UrsCStmWZFlyBat6Jr1VX3sBYGg..

hashes

DTI8UhOmF3/tO97N+PJ/GsY8aw0..

hashesfilecap: URI:CHK:n7djtlf3xnswqzrl4fjt..

Tahoe

Share Upload

22

Tahoe-LAFS gateway

Tahoe
Storage

client

HTTP(S)
Server

VdW81qLA6INx0uRPg0aWrKkMGgI..

hashes

UrsCStmWZFlyBat6Jr1VX3sBYGg..

hashes

DTI8UhOmF3/tO97N+PJ/GsY8aw0..

hashes

Storage

Storage

Storage

Tahoe

CLI returns filecap

23

Client
App

Tahoe-LAFS gateway

PUT /uri HTTP/1.0

Fourscore and seven years ago..

RESTful webapi
over HTTP(S)

Tahoe
Storage

client

HTTP(S)
Server

% tahoe put gettysburg.txt
URI:CHK:n7djt...
%

- web browser
- command-line tool
- Javascript frontends

200 OK

URI:CHK:n7djtlf3xnswqzrl4fjthqejdm:ffyrg5nbmubbjyc
6vgf3a7bgqpq24p6fzpuygp2isq2mjtgyalma:3:10:7326

Tahoe

Mutable Files

24

App Storage

Your Datacenter Cloud Storage Provider

slot1: value1
CREATE: return slot1
PUBLISH: storage[slot1] = value
RETRIEVE: value = storage[slot1]

Tahoe

Mutable Filecaps

• We define two kinds of handles for mutable files
– “writecaps” allow publishing new contents
– “readcaps” allow retrieving existing contents
– readcap can be derived from writecap, but not vice versa

25

writecap: URI:SSK:dvdhjmtpzpb2o2..

readcap: URI:SSK-RO:p55arnjqbrpc..

RSA signing key

AES encryption key

RSA verifying key

Tahoe

Directories

• Tahoe Directories are tables mapping childname to cap
– table is serialized, then uploaded as a file
– “dircap” is a filecap with instructions to interpret contents in a

special way

26

Documents

slides.ppt outline.txt

URI:CHK:n7djt.. URI:CHK:lcimg..

slides.ppt: URI:CHK:n7djt..
outline.txt: URI:CHK:lcimg..

URI:CHK:a2gxo..

URI:DIR-IMM:a2gxo..

Tahoe

Tahoe Directories

• Directories can be stored in mutable or immutable files
– when stored in immutable, Tahoe enforces deep-immutability

• Child caps can be readcaps or writecaps
– superencryption is used to enforce deep-readonlyness
– all child writecaps are encrypted with a key derived from the

parent writecap before encoding
• Users can grant read-only access to a directory

– while retaining write access for themselves or others

27

Tahoe

• Tahoe files and directories form a directed graph
– names are on the edges
– nodes are filecaps or dircaps
– no “parent” pointers

Tahoe Directory Graph

28

URI:CHK:n
7djt..

URI:CHK:l
cimg..

URI:DIR-
IMM:a2gx
o..

slides.ppt outline.txt

Tahoe

Sharing

• Files can be referenced by multiple parents

29

URI:CHK:n
7djt..

URI:CHK:l
cimg..

URI:DIR-
IMM:a2gx
o..

slides.ppt outline.txt

URI:DIR-
IMM:ffyr
g..

presentation

Tahoe

Sharing Directories

30

• Directories can be referenced by multiple parents
– entire subgraphs too

– Users can care some, but not all

URI:DIR-
IMM:ffyr
g..

URI:DIR-
IMM:st5c
3..

Tahoe

Verifycaps

• All files have a “verifycap”
• Integrity-checking hashes, storage-index

– but *no* decryption keys
• verifycaps can be used to check integrity of ciphertext

– allows servers, other non-trusted parties to do maintenance work
• new shares (for existing files) can be created using just

the verifycap
– allows non-trusted parties to perform repair work

• lets you take advantage of machines that would normally
be off-limits due to security considerations

31

Tahoe

Ongoing Work

• Smaller filecaps, Faster mutable files
– new formats, ECDSA, semi-private keys

• Accounting
– tracking+controlling how much space is consumed by each user

• Garbage Collection
– leases on shares, updated periodically, shares expire

• More frontends
– WebDAV, Browser plugins

32

Tahoe

Demo

• On-stage Tahoe grid with several nodes
• node1: files uploaded/downloaded
• node2: shares examined, corrupted, deleted

– files remain private, intact, available
• node1: file repair performed, new shares uploaded
• node2: replacement share examined

33

Tahoe

More Info?
http://allmydata.org/trac/tahoe

45

source code, installation instructions, bug tracker, mailing list, IRC
channel

mailto:Alan.Karp@HP.COM
mailto:Alan.Karp@HP.COM

Tahoe

APPLY SLIDE

• Bullet point here (see slides 4 and 5 for instructions)
• Bullet point here
• Bullet point here

46

Tahoe

YOUR HEADLINE HERE (UPPERCASE)

Category 1
Category 2
Category 3

47

Tahoe

YOUR HEADLINE HERE (UPPERCASE)

Category 1
Category 2
Category 3
Category 4

48

Tahoe

Arrows are semi-
transparent and can
be placed on top of

other objects

USEFUL ART – COPY, PASTE, AND RESIZE AS NEEDED

Type
text in
here

Type
text in
here

49

